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Abstract 

An algorithm is described to determine structure- 
factor phases from the estimated phases of 
(sem)invariants of any order, in a mixed mode if 
desired. The method essentially consists of a reduc- 
tion of a redundant set of linear equations by success- 
ive elimination of unknowns. The main result of the 
procedure is a set of mutually independent equations 
in which structure-factor phases are expressed as 
linear combinations of a limited number of unknowns 
(among which a suitable set of origin-defining phases 
must exist), and (sem)invariant phases of which 
(reliable) estimates are available. Application to an 
unknown P2~ structure using triple products only, 
followed by a tangent refinement, is given. From 
further tests it appeared that the method is 
preeminently expedient as a troubleshooter in intri- 
cate structure determinations. 

Introduction 

For small and medium-sized structures, the number 
of seminvariant phases (O's) which can be deter- 
mined by direct methods with a reasonable accuracy 
outreaches by far the number of structure-factor 
phases (,p's) to be determined for the calculation of 
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an interpretable E map. As seminvariants can actually 
be seen as linear combinations of structure-factor 
phases, a matrix inversion may be thought of as an 
appropriate procedure to determine structure-factor 
phases. For centrosymmetric problems this approach 
was first introduced by Cochran & Douglas (1955) 
and later amended by Vand & Pepinsky (1956). In 
essence that technique consists of two parts: (i) select 
a set of mutually independent relations from which 
the ~'s can be obtained via a matrix inversion and 
(ii) employ the relations that have not been used in 
a sensible way as a check on the plausibility of the 
obtained solution. 

Fortier, Fronckowiak, Smith, Hauptman & De Titta 
(1978) and Fortier, De Titta, Fronckowiak, Smith & 
Hauptman (1979) described a procedure which 
resembles the matrix-inversion method, but differs 
from it in the fact that the distinction between the 
steps (i) and (ii) has been removed. It consists of the 
reduction of a redundant set of special linear 
equations by successive elimination of unknowns. 
Starting with an arbitrary set of M seminvariants we 
find the following symbolic representation: 

Y'. q~k = Os ( s=  1 , 2 , . . . ,  M). (1) 
k 

Successive elimination of structure-factor phases and 
repeated substitutions in all previously obtained 
expressions leads in centrosymmetric space groups 
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to a number of equations of the form 

~h ~Y, ~ , + ~  ~j. (2) 
i j 

If the process is carded through to its end, all 
unknown ~'s may be expressed in terms of origin- 
defining q~'s and a complete set of independent ~ 's ,  
provided all necessary phase relations are employed. 

Apart from the type (2) expressions, usually a num- 
ber of so-called identities (Y,j ~ j -  0) is obtained as 
a consequence of the redundancy of the employed 
set of seminvariants. By their nature, these relations 
must be exactly fulfilled, so, by substituting the esti- 
mated values of the seminvariants, possible errors 
may be revealed. 

Although the basic features of the procedure may 
also be used in non-centrosymmetric space groups, a 
number of essential steps must be added to the 
algorithm to cope with the special problems encoun- 
tered when phases instead of signs are processed. 

In this paper a general description of phase reduc- 
tion will be given which is suitable for application in 
any space group, and in addition the successful appli- 
cation of the automated procedure (REDUC) to a 
P2~ structure will be discussed. 

General description of phase reduction 

The algorithm of phase reduction in both centrosym- 
metric and non-centrosymmetric space groups will be 
described point by point on the basis of the flow chart 
in Fig. 1. 

[A] Apart from a set of seminvariants, ranked in 
decreasing order of the reliability of their phase esti- 
mates, the procedure requires a priority listing for 
the relevant structure factors. These priorities indicate 
the order in which the unknown phases are preferably 
eliminated, and their selection is discussed later. 

[B] Suppose we enter this section at some stage 
of the procedure. After reading a seminvariant phase 
relation of type (1), it is checked if one or more of 
the contributing ~'s was eliminated previously (see 
IF]). Where possible, the current expressions for the 
~'s are substituted leading to 

a,~, - ~, flj~j. (3) 
i j 

The coefficients a and fl are reduced modulo 2 if the 
corresponding phase is restricted to two possible 
values as a consequence of space-group symmetry. 

[C] If all a ' s  in (3) appear to be zero, the identity 
Y,j f l j~ j -  0 is saved. Such a relation expresses the 
redundancy of the employed set of seminvariant 
phase relations. The chosen algorithm ensures that 
any relation that can be expressed exclusively in terms 
of previously accepted seminvariants will lead to such 
an identity. 

[D] If at least one of the a 's  in (3) is not equal 
to zero, a so-called primary relation is obtained. In 

symbolic form, these relations are exact, but since 
estimated values for the seminvariants are to be sub- 
stituted at the end of the process, the variance of a 
possible phase indication must already be taken into 
account. An approximate value of the variance, 
neglecting correlations, may be obtained by summing 
the individual variances of the estimates for the con- 
tributing ~'s .  If the result appears to be worse than 
some preset threshold, the primary relation is rejected 
and the lfist-read seminvariant is written to a scratch 
file. With a certain frequency, depending on a chosen 
parameter, the scratch file is used as input to the 
program to try whether previously rejected relations 
are of better use at that stage of the reduction process. 
This ensures that the most accurate estimates are used 
as much as possible in early stages of phase reduction. 

[ E] If the estimated variance of a primary relation 
is acceptable, one of the ~'s may be eliminated, 
provided the corresponding 1. (Owing to the 27r 
ambiguity in the estimates of the seminvariants, indi- 
cations for multiples of phases cannot be processed.) 
The supplied priority listing indicates which of the 
~'s is to be preferred. In those cases where only 
multiple-phase indications can be obtained (all la ]'s -> 
2), the last-read seminvariant will be tried again at a 
later stage. 

loo,  u o-n '.od It estimated s e m i n v a r i a n t s  
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Fig. 1. Flow chart  o f  the reduct ion procedure .  
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[F] The current expression 

~0 h ~ ~, Otp~p -l- ~ fljt~j (4) 
p J 

is substituted in all appropriate previously obtained 
results and the updated intermediate relations are 
saved. 

[G] If the remaining unused seminvariants do not 
lead to acceptable primary relations, or to new iden- 
tities, the elimination process stops. All final 
expressions of type (4) are printed and the ~'s which 
are not eliminated ('rest ~'s') are given explicitly. At 
this point the purely symbolic manipulations are 
finished and the numerical estimates for the 
seminvariants are loaded. It will be clear that there 
should not be sign ambiguity in these numerical esti- 
mates, although there is no restriction on their actual 
value. All identities are screened to reveal possible 
inconsistencies and for non-centrosymmetric space 
groups the extent to which an identity is violated is 
given. In addition, the numerical values of the terms 
Y.j/3j~j are determined together with the correspond- 
ing variances. Finally, for each seminvariant the score 
is given with respect to: (i) its importance for the 
reduction process [i.e. the number of final type (4) 
expressions in which it appears], (ii) the number of 
identities satisfied by its original estimate and (iii) 
the number of identities violated by its estimate. 

[H] On the basis of the identities, questionable 
seminvariants may be allocated. If necessary, the 
variances of these relations are increased, all derived 
phase indications are erased and the process is started 
again. Such a recycling procedure will result in 
expressions for structure-factor phases in which 
inconsistently estimated seminvariants are avoided as 
much as possible. 

All through the reduction procedure we are in 
possession of a variety of phase relations of type (4). 
It will be clear that these results will lose their prac- 
tical significance if the coefficients accompanying the 
not-eliminated ~o's and the estimated q~'s are too large 
and (or) if the individual expressions contain too 
many terms. Although the temporary rejection based 
on the variances of primary relations (part [ D] of the 
flow chart) restrains the elimination process, the 
repeated updating of expressions in part [F] of the 
procedure may lead to inefficient phase indications. 
In this context it is evident that the elimination 
priority of structure-factor phases must comply with 
the order in which the seminvariants are supplied. 
Elimination based on the I EI values of the contribut- 
ing structure factors, as suggested by Fortier et al. 
(1978, 1979), seems a reasonable choice if the 
seminvariants are ranked in decreasing order of relia- 
bility. 

However, although the not-eliminated ~'s can 
always define a permitted origin (seminvariants are 
incapable of relating origin-defining ~'s to each 

other), the result will not necessarily be very adequate. 
As an example, in the space group P21212~ the pro- 
cedure may end up with phases of general structure 
factors, while the phases of projection reflections are 
known to be much more effective for origin definition. 
Also it may appear that the resulting origin-defining 

's do not interact efficiently with the set of eliminated 
structure-factor phases. [They do not appear 
frequently in the final type (4) results.] Therefore we 
usually let the elimination priority of structure-factor 
phases be determined by a convergence procedure 
(Germain, Main & Woolfson, 1970) based on all 
available seminvariants and taking into account the 
need for an appropriate origin definition. If desired, 
origin-defining ~'s may be labelled at the outset to 
prevent them from being eliminated during the reduc- 
tion procedure. 

Normally this will lead to a phase reduction in 
which the number of not-eliminated ~0's is minimized 
without introducing intolerable variances in the final 
results. Apart from origin-defining phases a number 
of extra phases is expected to remain as unknowns 
at the end of the process. Based on their frequencies 
of occurrence in the final type (4) expressions, a few 
of them are designated to be given different numerical 
values, thus introducing the multi-solution concept 
into the phase-reduction procedure. In this way, 
several sets of trial phases for about 15 to 100 structure 
factors may be obtained, but since these trial values 
can only be seen as possible rough estimates for the 
true phases, a tangent refinement procedure will be 
necessary, especially for non-centrosymmetric cases. 
Afterwards, the thus obtained medium-sized starting 
sets are used for phase expansion to obtain numerical 
values for those phases which appeared to be 
unreachable by the reduction process. 

Practical application 

The crystal structure of (-)-a-methylbenzylam- 
monium hydrogen meso-tartrate, CsH12N+.C4HsO6, 
(Kroon, Duisenberg & Peerdeman, 1984) was solved 
by the reduction procedure. The relevant data for the 
compound are: monoclinic, space group P21 with 
Z = 2 ;  a=6.471,  b--13.74, c - -7-585A and f l=  
108.87 ° . Although the phase reduction can handle all 
kinds of seminvariants simultaneously, the structure 
was determined with triple-product phase relations 
only (~h+ ~k-~h+k=  ~hk). All phases qbbk were esti- 
mated to be zero in accordance with the Cochran 
distribution (Cochran, 1955). Consequently, no 
inconsistencies in the identities are expected but for 
a few cases in which phase relations, originating from 
space-group symmetry, are incompatible with the all- 
zero estimates for the triple-product phases. As an 
example we may consider Y'.~ relations which can lead 
to conflicting phase indications for one-phase 
seminvariants. 
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After Lp corrections, a scale and temperature factor 
were obtained from a Wilson plot and all 3570 
independent structure factors were normalized. The 
225 largest E values were used to generate 1975 triple 
products and via a convergence procedure, based on 
these relations only, the elimination priority for the 
structure-factor phases was determined. The reduc- 
tion procedure resulted in 200 expressions of type (4) 
and 282 identities. Two of the identities appeared to 
be violated, but since in both cases several triple 
products with a relatively low K value were involved, 
no action was taken. 

From the frequencies of occurrence in the final 
expressions it was concluded that only 12 triple- 
product phases were of ultimate importance. Neither 
their K values, nor their scores with regard to the 
identities led, however, to serious doubts about their 
original estimates. The other 188 relevant triple prod- 
ucts were used only sparsely (less than 20 times) and 
were therefore not expected to hinder the phase deter- 
mination, even if the true phases of a number of them 
would deviate substantially from zero. 

From the 25 not-eliminated structure-factor phases, 
only nine were used more than ten times in the final 
200 phase relations. Three of them were set equal to 
zero to define a permitted origin and three others 
were given several possible values by quadrant per- 
mutation. This resulted in 64 sets of trial values for 
87 structure-factor phases. All these sets were put into 
a refinement procedure based on the tangent formula. 
In order to make full use of the multi-solution prin- 
ciple, refinements leading to phases which bore no 
relation to their initial trial values were to be avoided; 
therefore the modified algorithm suggested by Pon- 
tenagel (1984) was used. Next, again using the tangent 
formula but now with the conventional algorithm, all 
64 sets were expanded to the 225 desired phases and 
the results were allowed to refine. The well known 
figures of merit ABSFOM, PSIZERO and RESID 
undoubtedly indicated one set to be the most prom- 
ising. 

The corresponding E map clearly revealed the 
meso-tartrate  ion in the ten highest peaks, but for the 
rest no significant features were present. One sub- 
sequent Fourier synthesis was sufficient to locate the 
non-H atoms of the counter ion after which the com- 
plete structure determination and refinement were 
straightforward. The final results are published else- 
where (Kroon, Duisenberg & Peerdeman, 1984). 

Discussion 

The novel algorithm for the application of phase 
reduction to non-centrosymmetric problems proves 
to be capable of determining a structure in a straight- 
forward way. Several other tests on known structures 
showed that the R E D U C  program works satisfac- 
torily in a variety of space groups, CaC9H1609.3H20, 

P1, Z =  1 (_Kanters, Jansma & Pontenagel, 1986); 
C4H606, P1, Z = 2  (Bootsma & Schoone, 1967); 
C17H21NSn, P21212~, Z = 4  (van Koten, Jastrzebski, 
Noltes, Pontenagel, Kroon & Spek, 1978); CsH703Br, 
P4~, Z = 24 (Bruins Slot, Krabbendam & Pontenagel, 
1987); C~2H22OI~.2H20, P4~212, Z = 8  (Kanters & 
van Bommel, 1987); C40H3605P 2.CH2C12, P421c, Z = 
4 (Spek, de Ruiter & Pontenagel, 1982). Therefore 
R E D U C  can be seen as a convenient alternative to 
already existing phase-determining procedures. The 
major advantage of the algorithm is the possibility of 
including all available phase relations in a natural 
way; i.e. without distinguishing between two-phase 
seminvariants, triple products, quartets etc. T h e  only 
parameter which determines whether a certain rela- 
tion is of use to the procedure is the variance of the 
phase indication which is usually easily obtained from 
the available statistical formulae. Although no tests 
have been made up till now with relations other than 
those of the Y~2 type, we expect much of their incorpor- 
ation, especially if independent non-zero estimates 
are available (in those eases the identities are expected 
to be much more valuable). 

Another advantage of the phase reduction pro- 
cedure is the clear and conveniently arranged book- 
keeping which is available in all stages of the process. 
At any time one can get insight into the current 
situation of the pedigree of phases; this makes 
R E D U C  a valuable troubleshooter if a routine appli- 
cation does not lead to a satisfactory solution of the 
phase problem. Especially the straightforward iden- 
tification of seminvariants which are of crucial 
importance to the phasing procedure is a valuable 
tool for localizing weak links. 

If desired one can include the phase of the 
seminvariant in question in the set of variables which 
are to be given different numerical values via a quad- 
rant permutation or via a magic integer representa- 
tion. This approach is certainly realistic since 
experience has shown that it is always possible to run 
R E D U C  in such a way that the number of important 
seminvariants is limited, so it will never be necessary 
to permute more than a few questionable 
seminvariants. 

In conclusion we stress that R E D U C  is not only 
a transparent procedure which is capable of treating 
all kinds of phase relations in a mixed mode, but that 
it is also easy to introduce non-standard manipula- 
tions which may be required to cope with special 
problems. 
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Abstract 
Multi-dimensional isomorphous replacement, 
analogous to isomorphous replacement in protein 
crystallography, can be used in fiber diffraction analy- 
sis to overcome the problems caused by the cylindrical 
averaging of the intensity data. Large numbers of 
heavy-atom derivatives are needed, however. A 
method is presented by which molecular structures 
may be determined using data from only one or two 
derivatives, similar to crystallographic single isomor- 
phous replacement. Partial structure information may 
also be incorporated. Examples are given using data 
from oriented gels of tobacco mosaic virus, and 
possibilities for further applications are discussed. 

Introduction 
Many important biological macromolecules, for 
example actin, myosin, tubulin, flagellin, and the coat 
proteins of some viruses, naturally form filamentous 
assemblies and have functions specific to those assem- 
blies. Even in cases where it is possible to crystallize 
such molecules as monomers or small aggregates, it 
is important to know the molecular structure of the 
intact assembly in order to understand the function 
of the molecule. It is therefore necessary to use the 
methods of fiber diffraction. 

Fiber diffraction from macromolecules has many 
aspects in common with protein crystallography, but 
there are also a number of major differences. The 
most important of these stems from the fact that 
although the filamentous particles in a fiber diffrac- 
tion specimen are oriented with their long axes 

approximately parallel, they are randomly oriented 
about those axes. As a consequence, the observed 
diffraction pattern is the cylindrical average of the 
diffraction pattern to be expected from one particle 
(in the absence of interference effects) or from a fully 
ordered array of particles (in the case of a crystalline 
fiber). Considerable information is lost in this averag- 
ing; for example, the effective number of observable 
diffraction data for tobaco mosaic virus (TMV) at 
3 A resolution is reduced by a factor about 2.5, and 
for the bacteriophage Pfl at the same resolution by 
1.7 (Makowski, 1982). These factors are much higher 
for lower-symmetry systems such as microtubules. 

The intensity of fiber diffraction can be written 
(Waser, 1955; Franklin & Klug, 1955) 

I (R,l) = ~ G/1.~ (R)G*j(R) ( 1 ) 
/1 

where l is the layer-line number, R is the reciprocal- 
space radius and n is the order of the Bessel functions 
that contribute to the complex Fourier-Bessel struc- 
ture factor G (Klug, Crick & Wyckoff, 1958). 
Equation (1) can be compared with the crystallo- 
graphic equation 

l ( h , k , l )  = * FhklF hkl. 

If each G is known, a Fourier-Bessel transform of 
the G terms will give an electron density map, just 
as a Fourier transform of the F terms will give an 
electron density map for a crystal. Instead of two 
unknowns (the real and imaginary parts of F), there 
are 2N unknowns, where N is the number of terms 
(G terms) contributing to the sum in (1). N depends 
on the size and symmetry of the diffracting particle 
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